$\left|\begin{array}{cc} a&b\\c&d\end{array}\right|=a\cdot d-b\cdot c$
$\left|\begin{array}{ccс} x_1&x_2&x_3\\y_1&y_2&y_3\\z_1&z_2&z_3\end{array}\right|=x_1\cdot\left|\begin{array}{cc}y_2&y_3\\z_2&z_3\end{array}\right|-x_2\cdot\left|\begin{array}{cc} y_1&y_3\\z_1&z_3\end{array}\right|+x_3\cdot\left|\begin{array}{cc} y_1&y_2\\z_1&z_2\end{array}\right|$
$\left|\begin{array}{ccс}\vec{i}&\vec{j}&\vec{k}\\y_1&y_2&y_3\\z_1&z_2&z_3\end{array}\right|=\vec{i}\cdot\left|\begin{array}{cc}y_2&y_3\\z_2&z_3\end{array}\right|-\vec{j}\cdot\left|\begin{array}{cc} y_1&y_3\\z_1&z_3\end{array}\right|+\vec{k}\cdot\left|\begin{array}{cc}y_1&y_2\\z_1&z_2\end{array}\right|=\left(y_2z_3-y_3z_2;-y_1z_3+y_3z_1; y_1z_2-y_2z_1\right)$