math-public:vectorniy_metod_v_prostranstve_thm
Различия
Показаны различия между двумя версиями страницы.
| Предыдущая версия справа и слеваПредыдущая версияСледующая версия | Предыдущая версия | ||
| math-public:vectorniy_metod_v_prostranstve_thm [2018/04/19 11:29] – labreslav | math-public:vectorniy_metod_v_prostranstve_thm [2019/04/02 18:52] (текущий) – [Теорема 4] labreslav | ||
|---|---|---|---|
| Строка 1: | Строка 1: | ||
| + | - $cos{\hat{(l, | ||
| + | - $\sin{\hat{(l, | ||
| + | - $\cos{\hat{(\alpha, | ||
| + | - $\rho(A, | ||
| + | - $\rho(l, | ||
| + | - $S_{ABC}=\dfrac{1}{2}\cdot|\overrightarrow{AB}\times\overrightarrow{AC}|$ -- площадь треугольника | ||
| + | - $V_{ABCD}=\dfrac{1}{6}|(\vec{a}, | ||
| + | - $V_{ABCDA_1B_1C_1D_1}=|(\vec{a}, | ||
| + | - $\rho(A,l) = \dfrac{|\vec{c}\times\vec{v}|}{|\vec{v}|}$ -- расстояние от точки до прямой | ||
| + | |||
| + | ====Теорема 1==== | ||
| + | Угол между прямой $l$ и плоскостью $\alpha$ можно найти из соотношения | ||
| + | $$\sin{\hat{(l, | ||
| + | где $\vec{v}$ -- направляющий вектор прямой $l$, а $\vec{n}_\alpha$ -- нормаль к плоскости $\alpha$. | ||
| + | |||
| + | ---- | ||
| + | |||
| + | ====Теорема 2==== | ||
| + | Угол между плоскостями $\alpha$ и $\beta$ можно найти из соотношения | ||
| + | $$\cos{\hat{(\alpha, | ||
| + | где $\vec{n}_\alpha$ и $\vec{n}_\beta$ -- это нормали к плоскостям $\alpha$ и $\beta$ соответственно. | ||
| + | |||
| + | |||
| + | ---- | ||
| + | |||
| ===Лемма=== | ===Лемма=== | ||
| Пусть даны вектора ненулевые вектора $\vec{c}$, $\vec{n}$. Длина проекции вектора $\vec{c}$ на вектор $\vec{n}$ вычисляется по формулам | Пусть даны вектора ненулевые вектора $\vec{c}$, $\vec{n}$. Длина проекции вектора $\vec{c}$ на вектор $\vec{n}$ вычисляется по формулам | ||
| Строка 5: | Строка 30: | ||
| - $|Pr_{\vec{n}}\vec{c}| = \left|\dfrac{\vec{c}\cdot\vec{n}}{|\vec{n}|}\right|$ | - $|Pr_{\vec{n}}\vec{c}| = \left|\dfrac{\vec{c}\cdot\vec{n}}{|\vec{n}|}\right|$ | ||
| + | ---- | ||
| - | ====Теорема==== | + | ====Теорема |
| - | $\sin{\hat{(l, | + | |
| - | ====Теорема==== | + | |
| Расстояние от точки $A$ до плоскости $\alpha$ можно найти по формуле $$\rho(A, | Расстояние от точки $A$ до плоскости $\alpha$ можно найти по формуле $$\rho(A, | ||
| ===Доказательство=== | ===Доказательство=== | ||
| Строка 17: | Строка 41: | ||
| Тогда $\rho(A, | Тогда $\rho(A, | ||
| - | ====Теорема==== | + | ---- |
| + | |||
| + | ====Теорема | ||
| Расстояние между скрещивающимися прямыми $l$ и $m$ можно найти по формуле $$\rho(l, | Расстояние между скрещивающимися прямыми $l$ и $m$ можно найти по формуле $$\rho(l, | ||
| ===Доказательство=== | ===Доказательство=== | ||
| Построим плоскость $\alpha$, проходящую через прямую $l$ и параллельную прямой $m$. | Построим плоскость $\alpha$, проходящую через прямую $l$ и параллельную прямой $m$. | ||
| - | Вектор $\vec{n}$ будет нормалью к плоскости $\alpha$, так как | + | Вектор $\vec{n}$ будет нормалью к плоскости $\alpha$, так как он перпендикулярен обеим прямым. |
| Ясно, что искомое расстояние -- это длина проекции вектора $\vec{c}$ на нормаль $\vec{n}$. | Ясно, что искомое расстояние -- это длина проекции вектора $\vec{c}$ на нормаль $\vec{n}$. | ||
| Тогда $\rho(l, | Тогда $\rho(l, | ||
math-public/vectorniy_metod_v_prostranstve_thm.1524126587.txt.gz · Последнее изменение: — labreslav
